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Abstract: This study aims to optimize the object identification process, especially identifying trash in
the house compound. Most object identification methods cannot distinguish whether the object is a
real image (3D) or a photographic image on paper (2D). This is a problem if the detected object is
moved from one place to another. If the object is 2D, the robot gripper only clamps empty objects.
In this study, the Sequential_Camera_LiDAR (SCL) method is proposed. This method combines a
Convolutional Neural Network (CNN) with LiDAR (Light Detection and Ranging), with an accuracy
of ±2 mm. After testing 11 types of trash on four CNN architectures (AlexNet, VGG16, GoogleNet,
and ResNet18), the accuracy results are 80.5%, 95.6%, 98.3%, and 97.5%. This result is perfect for
object identification. However, it needs to be optimized using a LiDAR sensor to determine the object
in 3D or 2D. Trash will be ignored if the fast scanning process with the LiDAR sensor detects non-real
(2D) trash. If Real (3D), the trash object will be scanned in detail to determine the robot gripper
position in lifting the trash object. The time efficiency generated by fast scanning is between 13.33%
to 59.26% depending on the object’s size. The larger the object, the greater the time efficiency. In
conclusion, optimization using the combination of a CNN and a LiDAR sensor can identify trash
objects correctly and determine whether the object is real (3D) or not (2D), so a decision may be made
to move the trash object from the detection location.

Keywords: optimization; identification; trash; Convolutional Neural Network (CNN); sensor

1. Introduction

A clean house compound is a dream for everyone. Trash can be caused by leaves
falling from trees or plastic trash such as plastic bottles and snack packets. Usually, trash on
the house compound is cleaned by the owner or the person assigned. If homeowners are
busy and do not have time to clean the house compound, then the house will look unclean
because trash is scattered in the house compound.

Currently, the state considers essential urban services, such as water, sanitation, and
solid waste management, to be the responsibility of local or national governments [1–4]. Re-
search on the identification and classification of trash has been performed [5–7]. However,
it was not optimal regarding the amount of trash detected and accurate trash detection.
At the same time, optimization plays an essential role in computer vision because many
computer vision algorithms employ an optimization step at some point in their proceed-
ing [8]. A study was conducted by Fuchikawa in 2005 on trash collection using an OSR
robot (Outdoor Service Robot) [9]. Unfortunately, this research was only aimed at collecting
plastic trash in PET bottles. Another study was conducted by an Italian research group
led by Mazzolai [10]. They named the robot DustCart. This robot groups junk types based
on user input. After the user inputs the type of trash, the robot opens the trashed store
according to the type of trash input. However, robot cameras are for navigation, avoiding
obstacles, and not classifying trash types.
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Improvements in the reliability and processing speed of the vision system and exper-
iments with other trash must be conducted [9]. Improvement was achieved at Stanford
University through a study on trash classified using the CNN (Convolution Neural Net-
work) method [11]. However, the amount of trash that can be identified is only up to six
items of trash [12–14], while there are more than six items in the house compound.

Identification of trash is an essential step before separation, and this can be performed
efficiently with the help of different machine-learning and image processing algorithms.
A Convolutional Neural Network (CNN) is preferred for the classification of images [15].
However, most methods of identifying objects cannot distinguish whether the object is a
real (3D) image or an image in the form of a photograph on paper (2D) [12,16–20]. Figure 1
shows a test object (mouse) in 2D and 3D. The object is detected using a Convolutional
Neural Network (CNN). The test results show that 2D and 3D (real) objects can be detected
well, with a prediction accuracy of 82%. In Figure 1, the 2D object is located on the right
and the 3D object is located on the left.
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Figure 1. A sample detection object (mouse) in 2D and 3D.

Then, each object is detected, 2D objects and 3D objects, using the Convolutional
Neural Network (CNN). An Intel Core i7 (8th gen) laptop, with 16 GB RAM, a NVIDIA
GeForce RTX2060 graphics card and MATLAB 2020a software was used. For 2D objects,
the samples are photos of objects on paper. The test results for 2D objects can be seen in
Figure 2a. The test results were obtained with a prediction accuracy of 98%.

Furthermore, testing was carried out for 3D objects (real). This object was placed next
to the 2D object. The test results can be seen in Figure 2b. The test results were obtained
with a prediction accuracy of 91%. From these three test results, it can be said that the
Convolutional Neural Network (CNN) can detect objects well. This will be a problem if the
object is moved from one place to another using the robot gripper. How would it be if the
robot wanted to move the trash object while the trash object was just a photograph of trash
on paper? A robot must identify/recognize real (3D) trash objects.

In any application, we can use a particular classifier and try to optimize its performance.
The usual approach is to try several different classifiers and choose the one that performs
the best on a separate validation set [21]. In this case, we propose a Convolutional Neural
Network (CNN) combined with LiDAR sensors to identify whether the object is real
(3D) or not (2D). A CNN was chosen because, at present, a CNN is the best machine-
learning method in object identification. Therefore, this study proposes optimizing trash
identification in the house compound using a Convolutional Neural Network (CNN).
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Figure 2. A sample of the detection object (mouse). (a) A photo of a mouse on paper (2D); (b) a real
mouse photo (3D).

The proposed research has similarities with sensor fusion. In sensor fusion, several
sensors are combined to take measurements. The goal is that the resulting data are more
accurate than using only one sensor. In this study, a camera and a LiDAR sensor were
used. Many studies use a combination of LiDAR sensors and cameras. Table 1 shows a
comparison of their use [22].

Table 1. Comparison between the Sensor Fusion Method and the Proposed Study.

References Sensors Method Comment

[23–29] Camera RGB, LiDAR Early Fusion
Data from RGB camera images and LiDAR sensors
are directly input for deep learning and processed

together. The result is complete depth.

[26,28,30] Camera RGB, LiDAR Sequential Fusion

The data from the RGB camera image are first
processed by deep learning. The result is RGB

depth. Then, these results and the LiDAR sensor
data directly become the input for subsequent

deep learning. Both are processed together, and
the result is a complete depth.

[26,28,31] Camera RGB, LiDAR Late Fusion

The data from the RGB camera image are first
processed by deep learning. The result is RGB

depth. In addition,
LiDAR sensor data are also processed by deep

learning. The result is LiDAR depth. Furthermore,
the respective outputs are processed together,

resulting in complete depth.

Proposed Camera RGB, LiDAR
Sequential_Camera_LiDAR
(SCL): CNN + Fast Scanning

Image + Detail Scanning Image

Image data from the RGB camera are processed
using deep learning to detect the presence of trash
objects. If what is detected is a trash object, then a
Fast Scanning image is performed to ensure that

the object is in 3D form. The scanning process uses
a LiDAR sensor. If the object is 3D, then a detail
scanning Image is performed to determine the

correct position in lifting the trash object using a
robot gripper.
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2. Materials and Methods

In this study, data collection is performed using own trash dataset, the TrashNet
dataset [11], and the Leafsnap dataset [32]. These data are grouped into 11 types of data,
namely, cardboard, fabric, food packaging, fruit, glass, leaf, metal, paper, plastic, rubber,
and wood. Figure 3 shows sample images of the trash dataset. The TrashNet dataset was
created by Gary Thung and Mindy Yang. This is a small dataset and contains 1989 images.
The LeafSnap dataset was created by Kumar et al. [33]. The dataset consists of 7500 field-
augmented images [34]. Own trash datasets were captured by a mobile device (iPhone).
The image data are augmented by a laptop using MATLAB R2020a software. This own
dataset is used to complement the TrashNet dataset and LeafSnap dataset to obtain 11 types
of data.
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Figure 3. (a) Sample images of own trash dataset. (b) Sample images of the TrashNet dataset.
(c) Sample images of the LeafSnap dataset.

The data were tested with four pre-trained Convolutional Neural Network (CNN)
architectures: AlexNet, VGG16, GoogleNet, and ResNet18. The training parameters can be
seen in Table 2.

Table 2. Training Parameter Used for Identification of Trash.

Parameter AlexNet VGG16 GoogleNet Resnet18

MiniBatch size 5 5 5 5
Learning rate 0.0003 0.0003 0.0003 0.0003

Max epoch 6 6 6 6
Data augmented Yes Yes Yes Yes
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The training parameters used are those with standard values already existing in the
pre-trained CNN architecture. After the data are collected, the next step is to capture the
trash object. Figure 4 depicts the block diagram of the proposed system.
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Figure 4. Block diagram.

After the IP camera captures the image data, the MATLAB program resizes the image.
It is helpful for further processing on CNN Image Detection. The CNN architecture used
can classify up to 1000 types of objects. However, modifications are made to the feature
learner to speed up classifying trash objects. The original value is 1000 fully connected
layers changed to 11 fully connected layers. This value is changed on every architecture—
AlexNet, VGG16, GoogleNet, and ResNet18. Figure 5 depicts transfer learning using the
CNN architecture. In the Figure, it can be seen that the first step of the trash dataset
is loading.
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Figure 5. Simple transfer learning using CNN architecture (AlexNet, VGGG16, GooogleNet, and
ResNet18).

Furthermore, this dataset is divided into training and validation datasets with a 70:30
ratio. Then, this dataset image is resized according to the size of the input layer architecture
used. For AlexNet, the image size is 227 × 227. For VGG16 GoogleNet and ResNet18, the
image size is 224 × 224, respectively. The next step is to modify the feature learner layer
and classification layer. Fully connected, it is changed from 1000 to 11, so the output from
the classification layer will automatically be 11 classes.

In MATLAB, the modification process can be performed by changing the architectural
design using Deep Network Designer. Figure 6 shows the process of modifying the
GoogleNet architecture.
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Figure 6. Modifying the GoogleNet architecture using Deep Network Designer.

Furthermore, the MATLAB program ensures that an image is a trash object. If the
object is not trash, it is ignored. If it is trash, the laptop (PC) sends a command to Arduino
to activate the actuator (servo1 and servo2). This command is based on the detected object
bounding box value. The actuator moves the LiDAR sensor in X and Z coordinates based
on the value. After that, the data from the LiDAR sensor are sent by Arduino to the laptop
(PC). The proposed flowchart can be seen in Figure 7.
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The Mapping Bounding box is used to convert the movement of the servo motor to
match the object’s size to be detected, as shown in Figure 8 [35]. After obtaining the x and z,
it is calculated/mapped to the degree of motor servo movement. In the scanning process,
servo motor 1 (x) and servo motor 2 (z) move at the boundary in the bounding box.
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Figure 8. Convert the bounding box to x, y, and z coordinates.

In the designed system, the LiDAR sensor is mounted on top of a servo motor 1. The
scanning process is then carried out using a LiDAR sensor. The scanning process is carried
out in 2 stages, namely, the fast and detailed scanning processes. This is to achieve an
efficient scanning time. If the detected object is flat, then the object is a 2D object. If it is
2D, the detailed scanning process does not need to be performed. However, if the object is
not flat, the detected object is a 3D object. If the object is 3D, a detailed process needs to be
performed. It aims to determine with certainty the geometric shape of the object. With the
object’s geometry data, the robot gripper can easily lift trash objects.

2.1. TF40 LiDAR

TF40 is an millimeter-level accuracy LiDAR with a range of up to 40 m [36–38].
Accuracy in mm is essential because the trash object is relatively small, 15 cm × 20 cm. It is
adjusted to the width of the robot gripper. TF40 has the following features: high accuracy,
tiny, small light spot, visible laser, and easier aiming. Table 3 is the main parameter of TF40,
and Figure 9 shows the physical form of the TF40 LiDAR sensor and its dimensions.

Table 3. Main Parameters of TF40.

Parameter Name Standard Version

Product performance Range 0.04–40 m 90% reflectivity,
0.04–20 m 10% reflectivity

Accuracy ±2 mm
Distance resolution 1 mm

Frame rate 5 Hz

Optical parameters Light source LD
Wavelength 635 nm
Laser class CLASS 2 (EN 60825)

Detection angle <1 mrad

Electrical parameters Supply voltage 3.3 V
Average current ≤180 mA

Power consumption ≤0.6 W
Communication voltage level LVTTL (3.3 V)
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Figure 9. TF40 LiDAR.

2.2. Fast Scanning Image Using LiDAR

The scanning process is fast, from the top left to the bottom right. The fast scanning
process is carried out five times according to the path in Figure 10.
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Figure 10. Fast scanning image process path.

The height of the bounding box (z) can be different depending on the size of the
detected trash object. However, the value of the degree of movement of the servo motor 2
(z) in this fast scanning system is obtained from the height of the bounding box divided by
five, as shown in the following formula:

Servo motor 2 (z)degree =
Height of bounding box

5
(1)

After obtaining the value of x and z based on the bounding box, it is calculated
(mapped) to the degree of motor servo movement. Point x0 line z0 in Figure 10 is the
starting point of the fast scanning image process. If the position of the servo motor 1 and
servo motor 2 is not at that point, then the program contained in the Arduino will move
them to that position.

After that, servo motor 1 (x) and servo motor 2 (z) move, as shown in Figure 11 in
line z0. In the initial conditions, the servo motor will move from point x0 line z0 to point
xn line z0. Then, the servo motor will move down along the servo motor 2 (z) degrees.
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For example, if the height of z is 100 degrees, then the servo motor 2 (z) will move down
20 degrees (100 degrees/5 = 20 degrees). The next step is servo motor 1 (x) will move along
z1 in the direction of movement opposite to line z0. The movement of the servo motor is
continued by following lines z1, z2, z3, and z4 and arriving at line z5 at point x0.
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In Figure 11, the position and movement of the LiDAR sensor during the scanning
process are shown. The following algorithm determines whether the detected object has
flat, concave, or convex sides.

• If sensor_value = hypotenuse, then the line/point of the image is a flat plane;
• If sensor_value > hypotenuse, then the lines/dots of the image become concave;
• If sensor_value < hypotenuse, then the lines/dots of the image become convex.

In the fast scanning process, the data read is time data (Time Stamp) and distance data
(Distance). Figure 12 is an example of a graph of the LiDAR TF40 sensor reading.
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Figure 13 is a flowchart of a fast scanning image. This flowchart is in the form of a
procedure that is called after the MATLAB program detects the trash object.
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Figure 13. Flowchart of fast scanning image.

This fast scanning image flowchart is used on Arduino. In the early stages, initial-
ization of the variables and constants that will be used is carried out. Next, the program
will read the value of the bounding box pixel (width, height). After this value is known,
bounding box mapping is performed. The results of this mapping are in the form of x and
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z values, which are the basic values for the degree of movement of the servo motor 1 and
servo motor 2. The next step is to read the servo motor’s position (1) and servo motor 2.
If the position is not yet in the initial position, then the servo motor 1 and servo motor 2
will be driven in that initial position. Then, the zj value is divided by 5. If the zj value is a
fractional number, then this value will be rounded off with the int(zj) command. The servo
motor can only move in integer degrees (not floating point degrees). The next step is to
map the movement of the servo motor 1 and servo motor 2.

The servo motor uses this mapping to move from point x0 line z0 to point x0 line z5.
Simultaneously with the movement of the servo motor along the z0, z1, z2, z3, z4, and z5
lines, LiDAR sensor data are also read and stored in Arduino memory. After the servo
motor 1 and servo motor 2 arrive at point x0 line z5, the LiDAR sensor data are sent to the
MATLAB program. In MATLAB, the LiDAR sensor data are processed. The result can be
2D or 3D. By the flowchart of the proposed study in Figure 7, if it is 2D, it is ignored. If it is
in 3D, then the next step is to do a detailed scanning image process.

2.3. Detail Scanning Image Using LiDAR

Detail scanning is helpful for the process of taking objects using a robot gripper. If
the gripper is not positioned correctly, the lifting process may fail. The scanning process is
almost the same as fast scanning, but the degree of movement of the servo motor has been
determined from the start, which is 2 degrees. The details can be seen in Figure 14.
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The difference in the process path between a fast scanning image and a detailed
scanning image lies only in the number of lines (z). In fast scanning images, the number of
lines is limited to 5 lines. Meanwhile, the minimum number of lines for detailed scanning
images is five. If the spacing between rows is limited to 2 degrees, then the degree of
movement of the servo motor 2 is at least 10 degrees.

Figure 15 is a flowchart of a detail scanning image. This flowchart is in the form of a
procedure that is called after the MATLAB program detects the trash object. This flowchart
is similar to the flowchart in Figure 13. The difference is that the scanning process will
stop if xi = x0, and zj = zn. Another difference is that the degree of movement of the servo



Sensors 2023, 23, 1499 12 of 23

motor 2 in fast scanning is determined by the z value divided by 5. Meanwhile, in the detail
scanning image, the degree of movement is equal to 2 degrees.
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In this study, four parameters were used to evaluate the accuracy of the model, namely
accuracy (Ac), precision (Pr), recall (Re), F1 score (F1) [39]. The formula can be seen in the
following equation.

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 Score =
2 × precision × recall

precision + recall
(5)

where TP is short for the number of true positives. TN is short for the number of true
negatives. False positive is defined as FP. FN presents false negatives.

3. Results

Image data were tested for 11 types of trash using four CNN architectures, namely
AlexNet, VGG16, GoogleNet, and ResNet18. The number of images for each type of trash
is 150 pieces. The data are augmented into 1200 images, so the total image is 13,200. The
data are divided into 70% training data and 30% test data.

Figure 16 is the result of training progress for GoogleNet. The validation accuracy
values for each CNN architecture can be seen in Table 4.
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Figure 16. Result of training progress trash object using GoogleNet.

Table 4 shows that the CNN GoogleNet architecture has the highest validation accuracy
value, while the CNN AlexNet architecture has the lowest validation value. However, in
terms of training time, the fastest training time was achieved by AlexNet and the slowest
training time was the VGG16 architecture.
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Table 4. Training Progress Result.

CNN Architecture Training Time (s) Validation Accuracy (%)

AlexNet 229 77.54
VGG16 894 79.09

GoogleNet 581 86.38
ResNet18 335 80.75

3.1. Confusion Matrix for Trash Classification Testing

This trash object identification system is tested for its performance using a confu-
sion matrix. The four pre-trained CNN architectures (AlexNet, VGG16, GoogleNet, and
ResNet18) were tested according to their respective architectures. Figure 17 shows the
results of the confusion matrix with VGG16.
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Figure 17. Result of confusion matrix trash using VGG16.

Table 5 is the result of comparing the accuracy of the confusion matrix. The table
shows that the AlexNet architecture has the lowest accuracy value, namely 80.5%, while
the GoogleNet architecture has the highest value, namely 98.3%.

Table 5. Comparison of the Confusion Matrix.

CNN Architecture Accuracy (%)

AlexNet 80.5
VGG16 95.6

GoogleNet 98.3
ResNet18 97.5
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3.2. Trash Identification Test Using a Real-Time Camera

After the training process is complete, the identification test of the trash object is
carried out. The test is carried out in real-time using a mobile device (iPhone) camera. The
IP address used during testing is as follows.

Camera = ipcam (‘http://192.168.43.28:8080/video’ accessed on 18 October 2022);
This address can be seen on the screen display of mobile device (iPhone) as shown

in Figure 18. Tests of the 11 types of trash can be seen in Figures 19–21. This test uses the
AlexNet architecture.
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Figure 21. Results of trash identification using a real-time camera. (a) glass; (b) plastic.

At the time of testing, there was also an error in identifying the trash object, as shown in
Figure 22. The trash object was identified as glass, even though the trash object was plastic.

The tests performed in Figures 19–21 are used to test the performance of pre-trained
CNN architectures (AlexNet, VGG16, GoogleNet, and ResNet18) in identifying trash in real
time. The number tested was 411 pieces of trash. Then, record the total trash detected for
each type of trash. This test used trash that had never been used in training. Tables 6–9 show
the results of the accuracy obtained by each pre-trained CNN architecture, while Table 10
shows the average accuracy that can be achieved by each pre-trained CNN architecture.
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Figure 22. Result of the error trash identification.

Table 6. The Accuracy of 11 Types of Trash Using a Real-Time Camera with Pre-Trained AlexNet.

Types of Trash Number of Real
Trash Tests

Total Trash is
Correctly Detected Accuracy (%)

Cardboard 45 37 82.22222222
Fabric 17 13 76.47058824
Food Packaging 63 52 82.53968254
Fruit 21 17 80.95238095
Glass 34 27 79.41176471
Leaf 56 46 82.14285714
Metal 21 16 76.19047619
Paper 61 51 83.60655738
Plastic 52 42 80.76923077
Rubber 14 10 71.42857143
Wood 27 21 77.77777778

Overall 411 332 79.41019176

Table 7. The Accuracy of 11 Types of Trash Using a Real-Time Camera with Pre-Trained VGG16.

Types of Trash Number of Real
Trash Tests

Total Trash is
Correctly Detected Accuracy (%)

Cardboard 45 40 88.88888889
Fabric 17 14 82.35294118

Food Packaging 63 57 90.47619048
Fruit 21 19 90.47619048
Glass 34 30 88.23529412
Leaf 56 49 87.50000000

Metal 21 18 85.71428571
Paper 61 54 88.52459016
Plastic 52 45 86.53846154
Rubber 14 11 78.57142857
Wood 27 23 85.18518519

Overall 411 360 86.58758694
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Table 8. The Accuracy of 11 Types of Trash Using a Real-Time Camera with Pre-Trained GoogleNet.

Types of Trash Number of Real
Trash Tests

Total Trash is
Correctly Detected Accuracy (%)

Cardboard 45 44 97.77777778
Fabric 17 16 94.11764706
Food Packaging 63 62 98.41269841
Fruit 21 20 95.23809524
Glass 34 33 97.05882353
Leaf 56 55 98.21428571
Metal 21 20 95.23809524
Paper 61 60 98.36065574
Plastic 52 51 98.07692308
Rubber 14 13 92.85714286
Wood 27 26 96.29629630

Overall 411 400 96.51349463

Table 9. The Accuracy of 11 Types of Trash Using a Real-Time Camera with Pre-Trained ResNet18.

Types of Trash Number of Real
Trash Tests

Total Trash is
Correctly Detected Accuracy (%)

Cardboard 45 43 95.55555556
Fabric 17 15 88.23529412
Food Packaging 63 61 96.82539683
Fruit 21 20 95.23809524
Glass 34 33 97.05882353
Leaf 56 54 96.42857143
Metal 21 20 95.23809524
Paper 61 59 96.72131148
Plastic 52 50 96.15384615
Rubber 14 13 92.85714286
Wood 27 26 96.2962963

Overall 411 394 95.14622079

Table 10. The Average Accuracy of Pre-Trained CNN in Real-Time Trash Identification.

CNN Architecture Average Accuracy (%)

AlexNet 79.410
VGG16 86.588

GoogleNet 96.513
ResNet18 95.146

3.3. Result of a Fast Scanning Image

A fast scanning image is used to quickly ensure that the identified image is an image
in 2D or 3D. The results of the fast scanning image can be seen in Figure 23.

In Figure 23, the results of the fast scanning image divide the value of the z-axis into 5.
This value comes from the servo motor 2.
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3.4. Result of Detail Scanning Image

After the fast scanning process states that an observed object is an object in 3D, the
detailed scanning image process is carried out. The function of this detail scanning image
is to ensure the robot gripper position when lifting trash.

In Figure 24, it can be seen that the detailed scanning image results are better than the
fast scanning image results. This is because the amount of data on the y-axis and z-axis are
more than the amount of data on the y- and z-axis in fast scanning images.
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3.5. Result of Time Speed Comparison between Fast Scanning Image and Detail Scanning Image

One of the optimizations in the trash identification process is to make time efficient in
identifying trash objects. Therefore, it is necessary to examine the difference between fast
and detailed scanning images, as depicted in Figure 25. The efficiency of time consumption
used in the trash identification process will be obtained from the results of this test.
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4. Discussion

In the initial experiment, the total images entered were 690 images with details:
cardboard 50, fabric 15, food packaging 50, fruit 50, glass 50, leaf 165, metal 65, paper 100,
plastic 120, rubber 15, and wood 15. In the results of training progress, accuracy ranges from
65.32% to 74.51%. Accuracy results on the confusion matrix ranged from 84.2% to 92.1%.

Furthermore, to increase the low accuracy value, the number of each data image in
each class needs to be added, especially on images less than 20. Images of each class are
added to a minimum of 150 images per class. Then, each image is augmented seven times so
that each class has 1200 images. There is an increase in the training progress, with accuracy
ranging from 77.54% to 86.38%. The accuracy in the confusion matrix increased from 80.5%
to 98.3%. Thus, data images must be added to increase the accuracy of identifying the
trash object.

Based on Tables 4 and 5, it can be seen that there is a linear correlation between the
resulting accuracy values. The lowest accuracy value in Table 4 is also the lowest accuracy
value in Table 5. Likewise, the highest accuracy value in Table 4 is also the highest accuracy
value in Table 5. Thus, without testing the value of the confusion matrix, we can also predict
the accuracy results on the confusion matrix by looking at the value of validation accuracy.

In the real-time trash identification test, there is a decrease in accuracy from each
pre-trained CNN. The lowest accuracy is generated by AlexNet, which is equal to 79.410%,
and the highest accuracy is generated by GoogleNet with accuracy of 96.513%. This is
caused by the lighting factor when detecting the trash object. However, this accuracy value
is already good for the identification process and can be continued for the next process,
namely the 2D or 3D determination of the identified trash.

In Table 4, it can be seen that the accuracy of GoogleNet is higher than ResNet18, but
ResNet18 has a much shorter training time compared to GoogleNet. This can also be taken
into consideration in choosing the pre-trained CNN to be used. Moreover, if the system is
made based on embedded systems.

Figure 11 illustrates the position of the LiDAR sensor during the scanning process.
Based on the figure, there are three formulas used, namely:

1. If the object is straight in front of the LiDAR sensor, then the y-coordinate:

y = distance value that measured by LiDAR sensor (6)
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2. If the object is on the front left side/the front right side of the LiDAR sensor, the
y-coordinate value can be calculated by the formula:

y = Cosθ × distance measured by LiDAR sensor (7)

3. The formula can calculate the x-coordinate value:

x = Degree of servo Motor 1 − 90 (8)

The value of 90 is due to servo motor 1 being set at 90 degrees. After all the x values
are read and stored in the matrix variable, then the x value is added to the maximum
x value with the formula:

x = x + maximum value of x (9)

The formula aims to make the x-coordinate values all positive.
After the x-coordinate and y-coordinate values are obtained, then the z-value is ob-

tained by the formula:
z = Degree of servo Motor 2 − 90 (10)

After all the z values are read and stored in the matrix variable, then the z value is
added to the maximum z value with the formula:

z = z + maximum value of z (11)

With a LiDAR accuracy of ±2 mm, the results of detail scanning images displayed
using MATLAB are similar to the original object. However, because what is scanned is
only the surface in front of the LiDAR sensor, the detailed scan only shows the object’s
surface. At first, the data generated by the LiDAR sensor were still in the form of numbers
containing the y-coordinate data after combining the data with the x coordinates (servo
motor 1) and z coordinates (servo motor 2).

Scanning images in detail is relatively time-consuming because the frame rate capabil-
ity of the LiDAR sensor is only 5 Hz. If every time it finds an object that is considered trash,
the robot must scan a detailed image, so the decision to lift the object will take longer. For
this reason, the system is equipped with fast scanning. With this fast scanning, if the object
considered trash is not in 3D shape, then the lifting process by the robot gripper is ignored.
This time efficiency can be performed, and the robot can search for the next trash object.

In this study, the Sequential_Camera_LiDAR (SCL) method is proposed. This method
is relatively simple, combining cameras and LiDAR sensors. A CNN processes the camera’s
output, followed by a fast scanning process by the LiDAR sensor. A comparison of the
proposed method with the previous method is in Table 1. However, this proposed study
can be used in a house compound. The proposed method differs from the previous method
in Table 1 (Early Fusion, Sequential Fusion, Late Fusion). These three methods are applied
to vehicles that must have a relatively high speed compared to the speed of the robot. In
addition, the vehicle’s response to obstacles in front of the camera is relatively faster than
the robot’s movement in the house compound. So the proposed method is suitable for use
in housing, but it is necessary to adjust the existing parameters for use on highways.

Indeed, in the real world, there is a possibility that 2D paper is also trash. However,
the robot in this study has the disadvantage of not being able to lift 2D objects, such as
2D paper. It is due to the geometry of the robot gripper itself. It will be a gap for further
research. In future studies, the robot gripper must be equipped with a suction system to lift
2D paper-shaped objects by being sucked on.

5. Conclusions

The optimization of the trash object detection system has been successfully carried out
by using a fast scanning system based on bounding boxes. The time efficiency ranges from
13.33% to 59.26%, depending on the size of the detected object. The larger the object, the
greater the time efficiency. The bigger the object, the more time it takes. Testing is limited
to objects of 15 cm × 20 cm. To overcome this, in future research, we will try to use stereo
LiDAR so that the scan time can be faster.
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In testing the identification of trash objects using several CNN architectures—AlexNet,
VGG16, GoogleNet, and ResNet18—all have a trash object identification accuracy of 80.5%,
95.6%, 98.3%, and 97.5%, respectively. This system uses a LiDAR sensor to ensure that the
object is real or not real. The results of LiDAR scanning in graphic form can be adequately
produced because the LiDAR sensor has a reading accuracy of 2 mm. The graph is the basis
for determining the robot gripper position in lifting the trash object. Future research will
focus on the trash collection process based on the resulting graph.
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