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Abstract—Accurate brain tumor detection is crucial due to its 

high mortality rate. However, existing automated methods 

suffer from limited accuracy and high false-positive rates. In 

this study, we aimed to improve brain tumor classification by 

comparing 17 different classifiers organized into six groups: 

Decision Tree (DT) Model, Support Vector Machine (SVM), 

Naive Bayes Classifier, Logistic Regression, Generalized 

Linear Model (GLM) Classifier, and Neural Network. We 

utilized a dataset of 3,762 Magnetic Resonance Imaging 

(MRI) scans of brain tumors from Kaggle, with each image 

having dimensions of 240 × 240 pixels and labeled as tumor 

or non-tumor. Our approach involved three main steps: 

extracting visual information using 17 predictor classes, 

optimizing feature extraction through weight optimization, 

and comparing different sets of classifier models. We 

evaluated the models’ performance using the confusion 

matrix and Receiver Operating Characteristics (ROC) 

curves. Our results showed that optimizing feature selection 

and utilizing ensemble classifiers improved the accuracy of 

brain tumor classification. The DT Model with ensemble 

classifiers emerged as the best-performing classifier, 

achieving an accuracy of 98.11% and an AUC of 0.99. 

Notably, Random Tree (RT) exhibited the highest accuracy 

within the ensemble classifier set, with a significant increase 

compared to other models. Our proposed method 

outperformed the standard approach, demonstrating its 

potential for enhancing brain tumor detection accuracy. This 

study contributes to the field by providing a more accurate 

method for detecting brain tumors, potentially enabling 

earlier detection and improved patient outcomes. Future 

research should focus on further improving brain tumor 

diagnosis and treatment through the application of machine 

learning techniques.  
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I. INTRODUCTION

Brain tumors are a complex and life-threatening 

condition that affects individuals of all ages and genders, 

causing damage to brain tissue and the central nervous 

system, leading to impaired cognitive abilities and reduced 

quality of life. The diagnosis and treatment of brain tumors 

present significant challenges due to the intricate nature of 

tumor biology, individual patient variability, and limited 

availability of patient data [1–4]. Artificial intelligence 

technology has emerged as a promising tool for processing 

medical data, creating precise predictive models, and 

aiding in the diagnosis and treatment of patients with brain 

tumors [5, 6]. Brain tumors are complex and 

life-threatening conditions that damage brain tissue and the 

central nervous system, leading to impaired cognitive 

abilities and a reduced quality of life, regardless of age or 

gender [7, 8]. Despite advancements in treatment, many 

patients still face challenges with diagnosis and effective 

therapy [9–11]. While imaging techniques such as 

Magnetic Resonance Imaging (MRI) and Computed 

Tomography Scan (CT Scan) are the primary methods of 

diagnosing brain tumors [12–14], the interpretation and 

diagnosis process can be arduous and requires a high level 

of proficiency [15, 16]. Moreover, in some instances, brain 

tumors can be difficult to detect using these methods, 

resulting in a delayed diagnosis [17–19].  

To address these challenges, brain tumor research has 

utilized technologies such as artificial intelligence to make 

the analysis of medical data more effective and 

efficient [20, 21], thus aiding physicians in the diagnosis 

and treatment of brain tumor patients [22]. Additional 

research is necessary to improve the recognition and 

treatment of brain tumors and enhance the quality of life of 

affected individuals [23]. Several research topics can be 

explored concerning brain tumors, such as brain tumor 

segmentation from imaging images to assist with diagnosis 

and treatment planning [24–26], classification of brain 

tumor types based on imaging image attributes and clinical 

data [27–30], prediction of brain tumor growth [31, 32], 
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and identification of risk factors and prevention of brain 

and other tumors [33, 34]. 

The previous research focuses on the classification of 

brain tumors, which involves grouping brain tumor types 

based on specific features such as size, location, and cell 

type [35–38]. Previous studies on brain tumor 

classification have utilized various techniques such as 

k-means clustering, Principal Component Analysis (PCA), 

Support Vector Machine (SVM), Decision Tree, Random 

Forest, and Neural Networks. For instance,  

Kumar et al. [39] described a hybrid method that combines 

deep learning techniques and conventional machine 

learning algorithms for classifying MRI images of brain 

tumors. The hybrid technique achieved a classification 

accuracy of 95.71% for the Brain Tumor Segmentation 

(BraTS) dataset and 94.6% for The Cancer Imaging 

Archive (TCIA) dataset. Jayapal et al. [40] presented 

Active Contour Model and Support Vector Machine (SVM) 

algorithms for tumor categorization, and their proposed 

intelligent system outperformed conventional techniques 

of categorization, achieving an accuracy of 92.48% and a 

sensitivity of 95.12%. Similarly, Huml et al. [41] utilized 

Atomic Force Microscopy (AFM) technology and data 

mining approaches for the categorization of brain cancers, 

and the proposed technique accurately classified brain 

tumors with an accuracy of 89.28%, but there is still a need 

for improved accuracy and dependability of brain tumor 

classifiers.  

To develop a more accurate and dependable brain tumor 

classification model, it is crucial to consider various 

criteria such as data quality, feature selection, and data 

mining approaches. Additionally, model validation and 

evaluation must be conducted regularly to ensure the best 

performance of categorization models [42]. So that to 

improve the accuracy of brain tumor classification, this 

study utilized Confirmatory Factor Analysis (CFA) for 

feature extraction. The classification stage was then 

divided into training and testing and subjected to k-fold 

cross-validation with k = 10. During the training process, 

17 classifiers were compared using three different models: 

(1) 17 standard classifier models (model CS); (2) 17 

classifier models with feature selection (model C+FS); and 

(3) 17 classifier models with ensemble classifier (model 

C+ES). Our proposed method demonstrated improved 

accuracy and dependability, providing a significant 

contribution to the field of brain tumor classification. By 

combining feature selection approaches or ensemble 

classifiers, we were able to achieve better results than the 

standard methods used in previous studies. These findings 

have important implications for the development of more 

accurate and dependable methods for diagnosing brain 

tumors, ultimately leading to earlier detection and 

treatment. Additionally, our research can aid in identifying 

critical areas for future research in improving brain tumor 

diagnosis and treatment using machine learning 

techniques. 

II. RESEARCH METHOD 

Due to the potential danger of brain tumors and their 

ability to impair brain function and threaten lives, it is 

important to conduct studies on tumor classification [43]. 

According to [44], timely detection and classification of 

brain tumors are critical for effective treatment. With 

advances in technology, data mining techniques can be 

used to classify brain tumors. However, careful 

consideration must be given to the choice of algorithm, as 

each method has its unique strengths and weaknesses 

depending on the data used. For instance, DT is prone to 

overfitting and not suitable for imbalanced data [45], while 

k-NN struggles with high-dimensional data, is susceptible 

to outliers, and requires a large amount of memory to hold 

the complete dataset [46]. SVM approach is particularly 

sensitive to parameter values and kernel functions [47], 

and Neural Network requires large amounts of data to train 

effectively [48]. To overcome these challenges, the 

proposed model in this study compares 17 classifiers 

across six groups, including DT Model, SVM, Naive 

Bayes Classifier, Logistic Regression, GLM Classifier, 

and Neural Network, with feature selection or ensemble 

classifier optimization, aiming to improve classification 

accuracy [49]. It is hoped that the advancement of data 

mining techniques can overcome these limitations and 

improve accuracy in the classification of brain tumors, 

enabling doctors to better identify appropriate treatment 

options for patients. The flowchart of the proposed model 

is shown in Fig. 1. 

 
Figure 1. Proposed model. 

 

A. Data Collection  

To evaluate the effectiveness of feature selection and 

ensemble classifiers in brain tumor classification, we used 

a dataset obtained from Kaggle (https://www.kaggle.com). 

The dataset comprised 3,762 images categorized as 

“Tumor” and “Non-tumor” and saved in either .jpg or .jpeg 

format. Each image had dimensions of 240×240 pixels and 

a depth of 24 bits, allowing for processing of RGB colors 

with 8 bits for each of the red (R), green (G), and blue (B) 

components. The images also had a density of 300 dpi 

(horizontal and vertical), which is a measure of density 

from one point to another in a unit of an inch (dots per 

inch). Examples of brain imaging samples with and 

without tumors are shown in Fig. 2. 
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Image12 (Tumor) 

 
Image10 (Tumor) 

 
Image231 (Non-Tumor) 

 
Image442 (Non-Tumor) 

 
Image192 (Tumor) 

 
Image33(Tumor) 

 
Image443 (Non-Tumor) 

 
Image39 (Non-Tumor) 

Figure 2. Sample brain image with size 240×240 pixels Complete file: 

shorturl.at/asZ02. 

B. Preprocessing 

To enhance the accuracy of brain tumor classification, 

we conducted a feature extraction process using the 

Confirmatory Factor Analysis (CFA) technique on the 

brain tumor dataset obtained from Kaggle 

(https://www.kaggle.com). The CFA technique comprised 

of first-order and second-order predictor classes, which 

were summarized in an excel spreadsheet (.xls) containing 

17 predictor classes per image. We compared and selected 

the best predictor class using feature weights such as 

information gain, gain ratio, rule, correlation, Gini index, 

and deviation to improve model accuracy. This 

preprocessing step was followed by developing a model 

that compared 17 classifiers from six groups, including DT 

Model, SVM, Naive Bayes Classifier, Logistic Regression, 

GLM Classifier, and Neural Network, with 12 predictor 

classes to classify images as “tumors” or “non-tumors”. 

The planned workflow diagram based on Fig. 1 is depicted 

in Fig. 3.  

 

Figure 3. Preprocessing phases completed. 

C. Classification Process 

After the preprocessing phase, the next step involves the 

classification stage, which is further divided into two parts 

—training and testing, and subjected to k-fold 

cross-validation with k = 10. During the training process, 

17 classifiers were compared using three different models, 

namely: (1) 17 standard classifier models (model CS); (2) 

17 classifier models with feature selection (model C+FS); 

and (3) 17 classifier models with ensemble classifier 

(model C+ES). The accuracy of each model was then 

evaluated using the test dataset, and the results of the 

classification methods for each model can be found in 

Table I. 

D. Evaluation Method 

In the evaluation phase, the performance of all 17 

classifiers in classifying brain tumor datasets into “tumors” 

and “non-tumors” was assessed. This process involved 

utilizing the confusion matrix, ROC curve, and Eqs. (1)–

(5). The ROC curve was constructed using the False 

Positive Rate and True Positive Rate derived from 

computations with the confusion matrix. The performance 

was determined by the AUC of the ROC curve, as shown 

in Algorithm 1 and Algorithm 2. It can be concluded that a 

larger area under the curve indicates better performance. 

 

Accuracy = 
TP+TN

TP+FP+FN+TN
                 (1) 

Precision =  
TP

TP + FP
                         (2) 

Recall =  
TP

TP+FN
                          (3) 

False Positive Rate (FPR) = 
FP

FP+TN
                 (4) 

True Positive Rate (TPR) = 
TP

TP+FN
                  (5) 

 

Accuracy is a metric that measures how well a model 

predicts overall, expressed as the percentage of correct 

predictions (True Positives and True Negatives) compared 

to the total number of predictions (True Positives, False 

Positives, False Negatives, and True Negatives). Precision, 

on the other hand, quantifies the proportion of true positive 

predictions out of all positive predictions made by the 

model, indicating its “precision” or accuracy in classifying 

positive labels. Recall, also known as sensitivity, measures 

the proportion of all positive cases successfully detected by 

the model, reflecting its ability to “recall” or “detect” 

positive cases. The False Positive Rate (FPR) calculates 

the ratio of false positive predictions to the actual total 

negative cases, informing us about how often the model 

incorrectly identifies negative class as positive. Lastly, the 

True Positive Rate (TPR) or Sensitivity gauges how well 

the model detects true positive cases or how sensitive it is 

to positive cases. These metrics provide valuable insights 

into the performance of classification models in terms of 

accuracy, precision, recall, false positive detection, and 

true positive detection. 
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TABLE I: THE RESULTS OF THE COMPARISON OF THE MODEL ACCURACY AND AREA AUC VALUES 

Classifiers H1 H2 H3 H4 H5 H6 

Decision Tree (DT) Model 

Decision Tree (DT) 97.22 0.985 98.93 0.983 97.95 0.989 

Random Forest (RF) 97.03 0.994 98.64 0.997 98.51 0.997 

Gradient Boosted Tree (GBT) 96.11 0.995 98.51 0.995 98.41 0.995 

Random Tree (RF) 92.85 0.925 91.12 0.906 97.58 0.991 

Support Vector Machine (SVM) 

SVM 95.03 0.966 97.93 0.995 98.06 0.995 

SVM (LibSVM) 83.21 0.945 89.95 0.964 86.84 0.991 

SVM (Linear) 97.09 0.996 98.01 0.995 98.06 0.996 

SVM (Evolutionary) 55.79 0.743 57.79 0.743 55.79 0.743 

Naive Bayes Classifier 
Naive Bayes 96.89 0.990 96.68 0.992 96.68 0.991 

Naive Bayes (Kernel) 93.59 0.979 96.2 0.991 95.7 0.979 

Logistic Regression 

Logistic Regression 98.43 0.997 98.01 0.997 98.38 0.998 

LR (SVM) 96.97 0.997 97.82 0.995 98.22 0.997 

LR (Evolutionary) 44.74 0.531 44.74 0.531 44.74 0.526 

GLM Classifier Generalized Linear Model 94.14 0.966 98.01 0.996 98.11 0.996 

Neural Network 

Neural Net 96.17 0.995 97.9 0.995 98.22 0.995 

Deep Learning 96.51 0.998 98.19 0.997 98.46 0.998 

AutoMLP 95.17 0.995 97.71 0.991 98.17 0.995 

Explanation of table headers: H1: represents the accuracy of the model CS, H2: represents the AUC of the model CS, H3: 

represents the accuracy of the model C+FS, H4: represents the AUC of the model C+FS, H5: represents the accuracy of the model 

C+ES, and H6: represents the AUC of the model C+ES. 

TABLE II. INTERPRETATION OF AUC VALUES 

AUC value Connotation 

0.9< AUC< 1.0 Excellent 

0.8< AUC< 0.9 Good 

0.7< AUC< 0.8 Fair 

0.6< AUC< 0.7 Poor 

0.5< AUC< 0.6 Insignificant 

 

Algorithm 1: Generating ROC Curve 

Input:  

- predicted values: y_pred (array) 

- true values: y_true (array) 

Output: 

- fpr (false positive rate) values (array) 

- tpr (true positive rate) values (array) 

- area under the curve (AUC) measure (float) 

# Step 1: Compute True Positive Rate (TPR) and False 

Positive Rate (FPR) for different thresholds 

fpr = [] 

tpr = [] 

thresholds = sorted(y_pred, reverse=True) 

num_positive_cases = sum(y_true) 

num_negative_cases = len(y_true) - num_positive_cases 

for threshold in thresholds: 

    predicted_positive = [int(x >= threshold) for x in y_pred] 

    true_positives = [x*y for x,y in zip(predicted_positive, 

y_true)] 

    false_positives = [(1-x)*y for x,y in zip(predicted_positive, 

y_true)] 

    tp_rate = sum(true_positives)/num_positive_cases 

    fp_rate = sum(false_positives)/num_negative_cases 

    tpr.append(tp_rate) 

    fpr.append(fp_rate) 

 

Algorithm 2: Calculating the AUC measure 

auc = 0.0 

for i in range(1, len(fpr)): 

    auc += (fpr[i] - fpr[i-1]) * (tpr[i] + tpr[i-1]) / 2.0   

return fpr, tpr, auc 

 

The pseudocode assumes that the input y_pred and 

y_true are arrays of predicted and true binary labels, 

respectively. The output includes two arrays of false 

positive rate (fpr) and true positive rate (tpr) values, along 

with the area under the curve (auc) measure. The ROC 

curve can be plotted using the fpr and tpr arrays, which 

represent the x and y axes, respectively. The AUC 

measure represents the area under the ROC curve and 

serves as a metric for evaluating the performance of a 

binary classifier.  

III. RESULTS AND DISCUSSION 

Based on the evaluation results, it can be concluded that 
optimizing the classification models through feature 
selection or ensemble classifiers has led to improved 
accuracy in the classification of brain tumors. On average, 
the improvement in accuracy ranged from 1% to 2%. 
However, it was observed that SVM (Evolutionary) and 
LR (Evolutionary) classifiers were not suitable for brain 
tumor classification, as they produced accuracy values 
below 50% in both standard and optimization model 
testing. 

Fig. 4 shows the results of the tests conducted on three 
models (Model CS, Model C+FS, and Model C+ES), it 
can be observed that Model C+FS and Model C+ES 
produce higher accuracy than Model CS for most 
classifiers. Overall, Model C+FS performs the best among 
the three models with an accuracy improvement of 1%–3% 
for most classifications compared to Model CS. On the 
other hand, Model C+ES provides an accuracy increase of 
0.5%–2% compared to Model CS. The accuracy 
improvements of Model C+FS can be seen in the tests on 
Decision Tree Model, Support Vector Machine, Naive 
Bayes Classifier, Logistic Regression, GLM Classifier, 
and Neural Network. Similarly, Model C+ES shows an 
increase in accuracy in the tests on Decision Tree Model, 
Support Vector Machine, Naive Bayes Classifier, Logistic 
Regression, and Neural Network. Based on these test 
results, it can be concluded that using feature selection or 
ensemble classifiers can improve accuracy in brain tumor 
classification. However, the effectiveness of using feature 
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selection or ensemble classifier depends on the type of 
classifier chosen. 

 

 
Figure 4. The graph shows the model’s accuracy scores for 17 classifiers. 

 
Fig. 5 shows the average accuracy values for each 

group of classifiers. The DT model had the highest 
increase in accuracy, with a 2.31% increase for ensemble 
classifier optimization and a 1% increase for feature 
selection optimization. The neural network model also had 
significant improvements in accuracy, with a 2.33% 
increase for ensemble classifier optimization and a 1.98% 
increase for feature selection optimization. The SVM, 
Naive Bayes Classifier, Logistic Regression, and GLM 
Classifier models had more modest increases in accuracy, 
ranging from 0.1% to 0.98% for all optimization methods. 

 

 
Figure 5. The graph shows the model’s average accuracy scores. 

 

 
Figure 6. The graph shows the model’s error accuracy scores. 

 
Fig. 6 illustrates the errors that occurred during the 

classification tests. When optimization was applied, errors 
were reduced in all models. The DT model had the largest 
reduction in error, with values of 0.0320, 0.0338, and 
0.0189 for model CS, model C+FS, and model C+ES, 
respectively. Compared to model CS, the difference in 
value was around 0.0131. The other classifier groups had 
smaller reductions in error, with values ranging from 
0.001 to 0.0003 when compared to model CS. 

To analyze the comparison between Model CS and 
Model C+FS, as well as Model CS and Model C+ES, we 
can utilize the Receiver Operating Characteristic (ROC) 
curve. The ROC curve is used to visualize and compare 
the classification performance at various thresholds. 
Based on the given table, we can create ROC curves for 
both comparisons. Analyzing the results, it can be 
observed that Model C+FS consistently outperforms 
Model CS in all classifications except for Support Vector 
Machine. Similarly, Model C+ES demonstrates better 
performance than Model CS across all classifications 
except for Support Vector Machine. This suggests that 
both Model C+FS and Model C+ES generally provide 
superior results compared to Model CS in terms of 
classification performance. However, it’s essential to 
consider additional factors and examine more detailed 
information when evaluating model performance. 

Based on the information provided, it seems that the 
ROC curve value for all classifier models has increased by 
0.004 to 0.01, which is associated with the improvement in 
various performance metrics such as accuracy, precision, 
recall, and sensitivity values. The DT, RF, SVM, SVM 
(LibSVM), and SVM (Linear) classifiers showed 
significant improvement, as seen in Fig. 7. Fig. 8 indicates 
that DT outperforms the other groups based on the average 
value of the ROC curve, with an increase in value by 
0.0183 for Model C+ES. The ROC curve graph for DT 
with ensemble classifier optimization is also shown. 
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Figure 7. ROC curve values graph for all classifiers. 

 

 

 
Figure 8. ROC curve values graph by group. 

 

Fig. 9 explains that the evaluation of the classification 

models using ROC curve analysis showed that the 

Random Tree (RT) classifier outperformed other 

classifiers, such as Decision Tree (DT), Random Forest 

(RF), and Gradient Boosting Tree (GBT) classifiers. The 

ROC curve graph indicated that RT has the highest Area 

Under Curve (AUC) value of 0.999, indicating excellent 

performance. Moreover, RT achieved a maximum 

accuracy of 97.58%, which is higher than the other 

classifiers evaluated. The precision level of the accuracy 

data obtained by the RT classifier was good, with a value 

of 0.9872, indicating that the classifier produced a low 

number of false positives. Additionally, the recall was 

0.9584, meaning that the RT classifier identified almost all 

of the positive cases in the dataset. The sensitivity level of 

the RT classifier was also extremely high compared to the 

DT, RF, and GBT classifiers, with a value of 0.9584. 

Furthermore, the optimization of the ensemble classifier 

with feature selection (C+ES) resulted in a very low error 

rate, with the smallest error margin being 0.0242 for the 

RT classifier. This finding implies that the optimization of 

the ensemble classifier with feature selection can improve 

the performance of the classification models. Overall, the 

results indicate that the RT classifier with the C+ES model 

is the most accurate and efficient classifier for brain tumor 

classification. 

 

 
Decision Tree (DT) 

 
Random Forest (RF) 

 
GBT 

 
Random Tree (RT) 

Figure 9. ROC Curve Graph for Decision Tree Model (model C+ES) 

classifier. 
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IV. CONCLUSION 

In this article, we presented a comparative study of 

ensemble classifiers with feature selection techniques for 

enhancing brain tumor classification performance. The 

study involved the classification of brain tumors using 17 

classifiers from six different groups, namely Decision 

Tree Model, Support Vector Machine, Naive Bayes 

Classifier, Logistic Regression, GLM Classifier, and 

Neural Network. The dataset used for the study was a 

collection of brain tumor images available on Kaggle. We 

first preprocessed the data using Confirmatory Factor 

Analysis (CFA) and feature weight to extract meaningful 

features from the images. We then compared the 

performance of three different models: 17 standard 

classifiers, 17 classifiers with feature selection, and 17 

classifiers with ensemble classifiers. The evaluation was 

carried out using k-fold cross-validation (k = 10) to ensure 

the robustness of the results. Our findings revealed that the 

ensemble of classifiers in the Decision Tree Model group 

was the best classifier, with an accuracy of 98.11% and an 

AUC of 0.993. Specifically, the Random Tree method 

within the Decision Tree Model group with ensemble 

classifiers showed an accuracy of 97.58%, which was 

4.73% higher than the standard classification model and 

6.46% higher than the feature selection optimization 

model. Furthermore, our proposed method (feature 

selection optimization or ensemble classifiers) showed 

superior classification performance compared to the 

standard method. Our study suggests that future research 

can focus on combining optimization with other 

classification models to further enhance brain tumor 

classification performance. Additionally, addressing the 

main issues in this study, such as limited memory and 

slow training speed, can be a potential avenue for future 

research. 
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