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Abstract. The goal of this study is to use a Convolutional Neural Network to find the optimum 

architectural model for classifying cloud images. Cirrus Cumulus Stratus Nimbus uses a source dataset 

that includes 11 cloud classifications and 2545 cloud photos (CCSN). In this study, the best 

Convolutional Neural Network is retrained almost fast by transferring education from Google's basic 

design. Based on the modified Googlenet architecture, the training and testing phases of the 

classification process are divided into two. The dataset is separated into three sections during the 

training phase: 70% of the training data, 15% of the validation data, and 15% of the test data. There are 

two trials to categorize cloud photographs during the test phase, one of which has ten cloud kinds that 

can be randomly chosen. The precision achieved throughout the training was 44.5%, according to the 

findings. The results of the two tests are 75%, with an average error of 0.2. In the testing phase, the 

percentage is 75%. 

 
Keywords: Cloud Image, Classification, Googlenet, CNN, CCSN Dataset 

 
1. Introduction 

Today's digital era is in the world. An era in which virtually all aspects of human life are closely 

related to computer technology [1]. As time goes by, people continue to develop knowledge and 

technology in order to support and ease their work. Artificial intelligence or more known as Artificial 

Intelligence is still developing (AI) [2]–[5]. Cloud detection is critical for a large number of tasks for 

remote optical data sensing. For example, clouds mask the Earth's surface and provide incorrect 

reflectance values for ground-based targets [6]. Remote sensing clouds have certain specific features 

including luminosity, color, texture, shape, etc [7]. Cloud detection techniques are employed by cloud 

investigators with physical cloud parameters such as (a) shape attributes; (b) fusion of cloud net multi- 

stage convolutionary features; (c) color transition; (d) cloud densities; (e) cloud shadows [8]. It's the 

main step of many object recognition and computer vision tasks to extract effective features. Several 

researchers therefore focused on robust features for a range of tasks of image classification [9]. 

Currently, much attention is paid to learning algorithms and revolutionary networks (CCN). The 

algorithm provides the image directly to the convolutionary neural networks, and the algorithm removes 

the most important features of the image [10]. In the findings indicate that CNN functionality extracted 
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from profound learning must be taken into account in the most visual recognition tasks [11]. To identify 

cloud image classifications, priority knowledge is needed, which is learned through identified cloud 

image types with a similar composition. The data sets of the CCSN (Cirrus Cumulus Stratus Nimbus) 

divides into 11 different cloud genus (main group): Ci = Cirrus; Cs = Cirrostratus; Cc = Cirrocumulus; 

Ac = Altocumulus; As = Altostratus; Cu = Cumulus; Cb = Cumulonimbus; Ns = Nimbostratus; Sc = 

Stratocumulus; St = Stratus; Ct = Contrail. In this experiment, the CNN is used to classify image types 

of cloud-based objects. The focus is on modeling for cloud-type object classification. Highlights of the 

paper are: 

a) To address the cloud classification problem, we propose a CNN Learning Transference Model 

that incorporates state of the art Transfer learning technology. 

b) We conducted cloud experiments collected by the World Metroliferative Organization and the 

results showed that the Model for Learning Transfer has been effective and potential. 

 

2. Methodology 

2.1. Dataset 

For cloud detection purposes, we use the Cirrus Cumulus Stratus Nimbus (CCSN). This dataset 

contains 11 categories. The data set of CCSN includes 2545 images of the Cloud. The representatives 

of each category are Ci = cirrus; Cs = cirrostratus; Cc = cirrocumulus; Ac = altocumulus; As = 

altostratus; Cu = cumulus; Cb = cumulonimbus; Ns = nimbostratus; Sc = stratocumulus; St = stratus; Ct 

= contrail. All pictures are 256 / 256 pixels of fixed resolution with JPEG format. 
 

Ac As Cb Cc 

 

 

 

 

 

 

Ci Cs Ct Cu 

   
Ns Sc St 

Figure 1. Example of a Cirrus Cumulus Stratus Nimbus (CCSN) cloud type 
 

2.2. CNN Architecture 

Convolutional Neural Networks (CNN) is a deep learning network architecture that can 

automatically learn how to represent picture features. CNN is part of a particular category of methods 

of the neural network. The CNN consists of three layer types. The layers can be configured, combined 

or completely connected. Usually, CNN is two-part structured. The first part of the system, called 

extraction of functions, uses coalescing and grouping layers. The second part is a classification that uses 

layers fully connected. The layer description is shown in table 1 for further details [9]. 
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Table 1. The description of CNN layers 
 

Layer Name Layer Description 
 

Convolutional 
layer 

Pooling layer 

Fully 

 
 

Fully 

Connected 

The convolution process was performed on the input image using a set of filters 
called the kernel. The characteristic map is the operation output. 

In this layer, the convolutionary layer output was reduced while the main 

information contained in the input layer was saved. The bundling process may be 

performed (max or average), the most common kind of bundling is the choice of 

maximum value. 

The extracted features of these layers were used for the classification task in the 

previous layers. 

  Layers  
 

3. Results and Discussion 

A well-trained image classification network can accurately classify images into categories. The 

trained network's limitation is that it can only classify the trained object to be classified. Assume 

GoogleNet has been trained to classify over 1000 different objects. If there are objects that are not among 

those 1000, the network will fail to classify them. As a result, we require a network that can train and 

classify new data sets. This is referred to as transfer learning. Transfer learning is a deep learning 

technique that employs existing networks as a starting point for learning new tasks [9]. Transfer learning 

involves removing a specific task layer from an existing network and adding a new layer so that it can 

be trained to learn new features for some of the new tasks. Then, using the new data set, this new layer 

is trained, validated, and tested [8], [10]–[13]. If the network is properly trained with appropriate data 

sets, it will be capable of classifying recently learned objects. 
 

Figure 2. Architecture Identification of ground monitoring cloud imagery using the CNN Learning 

Transfer Model 
 

Figure 2 shows that a neural network is trained to classify images by making certain changes to the 

network architecture. GoogleNet is one of the most popular neural convolution Networks in this study. 

This article shows the classification of the cloud type by the Google Net neural network (CNN). The 

layers are modified. The modified architecture layers are the FullyConnectredLayer and 

ClassificationOutputLayer layers. The FullyConnectredLayer layer renames the layer to 'Cloud Feature 

Learner', WeightLearnRateFactor = 10, and BiasLearnRateFactor = 10. Whereas the 

ClassificationOutputLayer layer changes the layer name to Cloud Classifier. Following are the 

modifications that have been made are shown in Figure 3 by using the Matlab 2021a programming 

language. 
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Dataset = imageDatastore('Dataset', 'IncludeSubfolders', true, 'LabelSource', 'foldernames'); 

[Training_Dataset, Validation_Dataset, Testing_Dataset] = splitEachLabel(Dataset, 0.7, 0.15, 0.15); 

Minibatch_Size = 11; 

trainingOptions='sgdm'; 

MaxEpochs= 10; 

InitialLearnRate= 0.0001; 

Shuffle= every-epoch; 

ValidationData= Resized_Validation_Dataset; 

ValidationFrequency= Validation_Frequency; 

Verbose= false. 

 

 

   

Figure 3. Modify the GoogleNet architecture layer 
 

Following the modification of the GoogleNet architecture screen, the training process is carried out by 

dividing the data into three parts, namely Training Dataset of 70%, Validation Dataset of 15%, and 

Testing Dataset of 15%, which is carried out at random on 2545 cloud images divided into 11 cloud 

types (Figure 1 ). The dataset sharing program code is shown below, along with the results of dividing 

the dataset into three parts (Training Dataset, Validation Dataset, and Testing Dataset), as shown in 

Figures 4 and 5. 
 

Figure 4. Kode script dari pembagian dataset 
 

(a) (b) 

 

 

 

 
 

(c) (d) 

Figure 5. The results of dividing the dataset into three parts (Training Dataset, 

Validation Dataset, Testing Dataset). 
 

Figure 5 shows that the number of datasets for Training Dataset (b) is 1782 (70%), the number of datasets 

for Validation Dataset (c) is 382 (15%), and the number of datasets for Testing Dataset (d) is 381 (15%). 

(a) The total number of datasets is 2545. The following are the outcomes of the training process, which 

was carried out with the following parameters: 
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Figure 6. The training process of the GoogleNet architecture 

 
Figure 6 explains that there are two types of plots. The upper plot represents accuracy or acc, while the 

bottom plot represents error or loss. The lower plot (error plot) shows that there is a decrease in the red 

line, but there is a flat epoch starting from epoch 2-10, whereas the upper plot (plot accuracy) shows an 

increase in epoch 1–10. This demonstrates that the formed fit model already has a fairly good accuracy 

value to use. The training process yielded a 44.5 percent accuracy after 315 minutes, 30 seconds, and 

1620 iterations. Then, repeat the testing process with 2 trials based on the training process. The results 

of five experiments, as shown in Figure 7, are as follows. 
 

(a) (b) 

Figure 7. Classification test results with 5 trials 
 

Figure 7 shows a tabular explanation of each experimental result using ten different cloud images. 

 

Table 2. Results of the First Experiment 

No Cloud 

images 

Cloud 

type 

Prediction 

Results 

Probability Accuracy Conclusion 

1  Cb Cb 0.819 81.9% True 

 

 

2 Ns Ns 0.565 56.5% True 
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2 Sc Cs 0.327 32.7% False 

 

 

No Cloud 
images 

Cloud 
type 

Prediction 
Results 

Probability Accuracy Conclusion 

3  Cc Cc 0.916 91.6% True 

 
4 

  
Cu 

 
Cu 

 
0.543 

 
54.3% 

 
True 

 
5 

  
Ci 

 
Ci 

 
0.667 

 
66.7% 

 
True 

 
6 

  
Ac 

 
Cs 

 
0.349 

 
34.9% 

 
False 

 
7 

  
Ct 

 
Ct 

 
0.468 

 
46.8% 

 
True 

 
8 

  
Ns 

 
Ns 

 
0.441 

 
44.1% 

 
True 

 
9 

  
Cc 

 
Cs 

 
0.49.9 

 
49.9% 

 
False 

 
10 

  
Ns 

 
Ns 

 
0.367 

 
36.7 

 
True 

 

 
 

Note: Ci = cirrus; Cs = cirrostratus; Cc = cirrocumulus; Ac = altocumulus; As = altostratus; 

Cu = cumulus; Cb = cumulonimbus; Ns = nimbostratus; Sc = stratocumulus; St = stratus; Ct = contrail 

 

In the first experiment, there are two errors with an error value of 0.2 (80% accuracy) among the ten 

classified cloud types. 

Table 3. Results of the Second Experiment 

No Cloud 

images 

Cloud 

type 

Prediction 

Results 

Probability Accuracy Conclusion 

1  Cu Cu 0.887 88.7% True 
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7 Ac Ac 0.956 95.6% True 

8 Sc Cs 0.274 27.4% False 

9 Ci Ns 0.425 42.5% False 

10 Ct Ct 0.1 100% True 

 
 

No Cloud 
images 

Cloud 
type 

Prediction 
Results 

Probability Accuracy Conclusion 

3  Cs Cs 0.630 63% True 
 

 
 

4 Cc Cc 0.972 97.2% True 

 

 

5 Cb Cb 0.510 51% True 

 

 

6 Cc Cc 0.832 83.2% True 
 

 

 

Note: Ci = cirrus; Cs = cirrostratus; Cc = cirrocumulus; Ac = altocumulus; As = altostratus; Cu = cumulus; 

Cb = cumulonimbus; Ns = nimbostratus; Sc = stratocumulus; St = stratus; Ct = contrail 

 

In the first experiment, there are three errors with an error value of 0.3 (70% accuracy) among the ten 

classified cloud types. The average truth accuracy from the two experiments is 75%, with an average 

error value of 0.25. As a result, even though the accuracy value in training is less than 50%, the model 

obtained in this experiment produces a high level of accuracy in test results. 

 

4. Conclusions 

Based on the experimental results, it is possible to conclude that the architectural modification on 

GoogleNet for cloud type classification cases can be used with an accuracy value greater than 70%. 

There may be prediction errors between several types of clouds because they have nearly identical 

appearances, namely Stratocumulus, Cirrostratus, Cirrus, and Nimbostratus, resulting in a prediction 

error. Meanwhile, different types of clouds can be accurately predicted because they have a distinct 

appearance, both in terms of shape and color, making them easier to predict. 
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