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Abstract.  This research aims to produce the best architectural model using a Convolutionary Neural Network 

from the results of the detection of a cloud image classification. The source dataset is composed of 11 cloud 

categories, covering 2545 cloud images, and is used by Cirrus Cumulus stratus Nimbus (CCSN). This study 

makes use of the basic google architecture to retrain the optimal Convolutional Neural Network almost 

instantly by transferring education. The classification process uses two phases, namely training and testing, 

based on the modified Googlenet architecture. During the training phase, the dataset is divided into three 

parts: training data of 70%, validation data of 15% and test data of 15%. During the test phase, however, two 

experiments are performed to classify the cloud images, one of which is composed by 10 cloud types which 

can be randomly selected. The results showed that the precision produced during training was 44.5%. In the 

two tests the results are 75%, with an average error value of 0.25. The result is 75% in the test phase. 

Keywords: Cloud image, classification, googlenet, CNN, CCSN dataset.  

1. Introduction 

Today's digital era is in the world. An era in which virtually all aspects of human life are closely 

related to computer technology. As time goes by, people continue to develop knowledge and technology 

in order to support and ease their work. Artificial intelligence or more known as Artificial Intelligence is 

still developing (AI) [1]–[3]. Cloud detection is critical for a large number of tasks for remote optical data 

sensing. For example, clouds mask the Earth's surface and provide incorrect reflectance values for ground-

based targets [4]. Remote sensing clouds have certain specific features including luminosity, color, 

texture, shape, etc [5]. Cloud detection techniques are employed by cloud investigators with physical 

cloud parameters such as (a) shape attributes; (b) fusion of cloud net multi-stage convolutionary features; 

(c) color transition; (d) cloud densities; (e) cloud shadows [6]. It's the main step of many object 

recognition and computer vision tasks to extract effective features. Several researchers therefore focused 



 

 

on robust features for a range of tasks of image classification [7]. Currently, much attention is paid to 

learning algorithms and revolutionary networks (CCN). The algorithm provides the image directly to the 

convolutionary neural networks, and the algorithm removes the most important features of the image [8]. 

In the findings indicate that CNN functionality extracted from profound learning must be taken into 

account in the most visual recognition tasks [9]. To identify cloud image classifications, priority 

knowledge is needed, which is learned through identified cloud image types with a similar composition. 

The data sets of the CCSN (Cirrus Cumulus Stratus Nimbus) divides into 11 different cloud genus (main 

group): Ci = Cirrus; Cs = Cirrostratus; Cc = Cirrocumulus; Ac = Altocumulus; As = Altostratus; Cu = 

Cumulus; Cb = Cumulonimbus; Ns = Nimbostratus; Sc = Stratocumulus; St = Stratus; Ct = Contrail. In 

this experiment, the CNN is used to classify image types of cloud-based objects. The focus is on modeling 

for cloud-type object classification. Highlights of the paper are: 

a) To address the cloud classification problem, we propose a CNN Learning Transference Model that 

incorporates state of the art Transfer learning technology. 

b) We conducted cloud experiments collected by the World Metroliferative Organization and the 

results showed that the Model for Learning Transfer has been effective and potential. 

 

2. Methods 

2.1. Dataset 

For cloud detection purposes, we use the Cirrus Cumulus Stratus Nimbus (CCSN). This dataset 

contains 11 categories. The data set of CCSN includes 2545 images of the Cloud. The representatives of 

each category are Ci = cirrus; Cs = cirrostratus; Cc = cirrocumulus; Ac = altocumulus; As = altostratus; 

Cu = cumulus; Cb = cumulonimbus; Ns = nimbostratus; Sc = stratocumulus; St = stratus; Ct = contrail. 

All pictures are 256 / 256 pixels of fixed resolution with JPEG format. 
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Figure 1. Example of a Cirrus Cumulus Stratus Nimbus (CCSN) cloud type 



 

 

2.2. CNN Architecture 

Convolutional Neural Networks (CNN) is a deep learning network architecture that can automatically 

learn how to represent picture features. CNN is part of a particular category of methods of the neural 

network. The CNN consists of three layer types. The layers can be configured, combined or completely 

connected. Usually, CNN is two-part structured. The first part of the system, called extraction of 

functions, uses coalescing and grouping layers. The second part is a classification that uses layers fully 

connected. The layer description is shown in table 1 for further details [7]. 

 

Table 1. The description of CNN layers 

Layer Name Layer Description 

Convolutional 

layer 

The convolution process was performed on the input image using a set of filters 

called the kernel. The characteristic map is the operation output. 

Pooling layer 

Fully 

In this layer, the convolutionary layer output was reduced while the main 

information contained in the input layer was saved. The bundling process may be 

performed (max or average), the most common kind of bundling is the choice of 

maximum value. 

Fully 

Connected 

Layers 

The extracted features of these layers were used for the classification task in the 

previous layers. 

 

3. Results And Discussion 

A well-trained image classification network can accurately classify images into categories. The trained 

network's limitation is that it can only classify the trained object to be classified. Assume GoogleNet has 

been trained to classify over 1000 different objects. If there are objects that are not among those 1000, the 

network will fail to classify them. As a result, we require a network that can train and classify new data 

sets. This is referred to as transfer learning. Transfer learning is a deep learning technique that employs 

existing networks as a starting point for learning new tasks [7]. Transfer learning involves removing a 

specific task layer from an existing network and adding a new layer so that it can be trained to learn new 

features for some of the new tasks. Then, using the new data set, this new layer is trained, validated, and 

tested [6], [8]–[11]. If the network is properly trained with appropriate data sets, it will be capable of 

classifying recently learned objects. 

 

Figure 2. Architecture Identification of ground monitoring cloud imagery using the CNN Learning 

Transfer Model 
 

Figure 2 shows that a neural network is trained to classify images by making certain changes to the 

network architecture. GoogleNet is one of the most popular neural convolution Networks in this study. 



 

 

This article shows the classification of the cloud type by the Google Net neural network (CNN). The 

layers are modified. The modified architecture layers are the FullyConnectredLayer and 

ClassificationOutputLayer layers. The FullyConnectredLayer layer renames the layer to 'Cloud Feature 

Learner', WeightLearnRateFactor = 10, and BiasLearnRateFactor = 10. Whereas the 

ClassificationOutputLayer layer changes the layer name to Cloud Classifier. Following are the 

modifications that have been made are shown in Figure 3 by using the Matlab 2021a programming 

language. 
 

   
Figure 3. Modify the GoogleNet architecture layer 

 

Following the modification of the GoogleNet architecture screen, the training process is carried out by 

dividing the data into three parts, namely Training Dataset of 70%, Validation Dataset of 15%, and 

Testing Dataset of 15%, which is carried out at random on 2545 cloud images divided into 11 cloud types 

(Figure 1 ). The dataset sharing program code is shown below, along with the results of dividing the 

dataset into three parts (Training Dataset, Validation Dataset, and Testing Dataset), as shown in Figures 4 

and 5. 
 

Dataset = imageDatastore('Dataset', 'IncludeSubfolders', true, 'LabelSource', 'foldernames'); 

[Training_Dataset, Validation_Dataset, Testing_Dataset] = splitEachLabel(Dataset, 0.7, 0.15, 0.15); 

Figure 4. Kode script dari pembagian dataset 

 

 
(a) 

 
(b) 

 
(c) (d) 

Figure 5. The results of dividing the dataset into three parts (Training Dataset, Validation Dataset, Testing 

Dataset). 
 

Figure 5 shows that the number of datasets for Training Dataset (b) is 1782 (70%), the number of datasets 

for Validation Dataset (c) is 382 (15%), and the number of datasets for Testing Dataset (d) is 381 (15%). 

(a) The total number of datasets is 2545. The following are the outcomes of the training process, which 

was carried out with the following parameters: 
 



 

 

Minibatch_Size = 11; 

trainingOptions='sgdm'; 

MaxEpochs= 10; 

InitialLearnRate= 0.0001; 

Shuffle= every-epoch; 

ValidationData= Resized_Validation_Dataset; 

ValidationFrequency= Validation_Frequency; 

Verbose= false. 

 

 
Figure 6. The training process of the GoogleNet architecture 

 
Figure 6 explains that there are two types of plots. The upper plot represents accuracy or acc, while the 

bottom plot represents error or loss. The lower plot (error plot) shows that there is a decrease in the red 

line, but there is a flat epoch starting from epoch 2-10, whereas the upper plot (plot accuracy) shows an 

increase in epoch 1–10. This demonstrates that the formed fit model already has a fairly good accuracy 

value to use. The training process yielded a 44.5 percent accuracy after 315 minutes, 30 seconds, and 1620 

iterations. Then, repeat the testing process with 2 trials based on the training process. The results of five 

experiments, as shown in Figure 7, are as follows. 
 

 
(a) 

 
(b) 

Figure 7. Classification test results with 5 trials 
 

Figure 7 shows a tabular explanation of each experimental result using ten different cloud images. 

 



 

 

Table 1. Results of the First Experiment 
No Cloud 

images 

Cloud 

type 

Prediction 

Results 

Probability Accuracy Conclusion 

1 

 

Cb Cb 0.819 81.9% True 

2 

 

Ns Ns 0.565 56.5% True 

3 

 

Cc Cc 0.916 91.6% True 

4 

 

Cu Cu 0.543 54.3% True 

5 

 

Ci Ci 0.667 66.7% True 

6 

 

Ac Cs 0.349 34.9% False 

7 

 

Ct Ct 0.468 46.8% True 

8 

 

Ns Ns 0.441 44.1% True 

9 

 

Cc Cs 0.49.9 49.9% False 

10 

 

Ns Ns 0.367 36.7 True 

Note: Ci = cirrus; Cs = cirrostratus; Cc = cirrocumulus; Ac = altocumulus; As = altostratus; Cu = cumulus; Cb = 

cumulonimbus; Ns = nimbostratus; Sc = stratocumulus; St = stratus; Ct = contrail 

In the first experiment, there are two errors with an error value of 0.2 (80% accuracy) among the ten 

classified cloud types. 

 

 



 

 

Table 2. Results of the Second Experiment 
No Cloud 

images 

Cloud 

type 

Prediction 

Results 

Probability Accuracy Conclusion 

1 

 

Cu Cu 0.887 88.7% True 

2 

 

Sc Cs 0.327 32.7% False 

3 

 

Cs Cs 0.630 63% True 

4 

 

Cc Cc 0.972 97.2% True 

5 

 

Cb Cb 0.510 51% True 

6 

 

Cc Cc 0.832 83.2% True 

7 

 

Ac Ac 0.956 95.6% True 

8 

 

Sc Cs 0.274 27.4% False 

9 

 

Ci Ns 0.425 42.5% False 

10 

 

Ct Ct 0.1 100% True 

Note: Ci = cirrus; Cs = cirrostratus; Cc = cirrocumulus; Ac = altocumulus; As = altostratus; Cu = cumulus; Cb = cumulonimbus; 

Ns = nimbostratus; Sc = stratocumulus; St = stratus; Ct = contrail 

In the first experiment, there are three errors with an error value of 0.3 (70% accuracy) among the ten 

classified cloud types. The average truth accuracy from the two experiments is 75%, with an average error 

value of 0.25. As a result, even though the accuracy value in training is less than 50%, the model obtained 

in this experiment produces a high level of accuracy in test results. 



 

 

4. Conclusions 

Based on the experimental results, it is possible to conclude that the architectural modification on 

GoogleNet for cloud type classification cases can be used with an accuracy value greater than 70%. There 

may be prediction errors between several types of clouds because they have nearly identical appearances, 

namely Stratocumulus, Cirrostratus, Cirrus, and Nimbostratus, resulting in a prediction error. Meanwhile, 

different types of clouds can be accurately predicted because they have a distinct appearance, both in 

terms of shape and color, making them easier to predict. 
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